Saba Navabzadeh Esmaeely

Ohio University Institute for Corrosion and Multiphase Technology

Introduction

In the oil and gas industry, CO₂ corrosion has been widely studied over several decades. However, simulated conditions in the laboratory have typically employed pure NaCl electrolytes. This overlooks the fact that brine chemistry of formation water is important due to the potential for cations dissolved therein to compete with Fe²⁺ in the formation of carbonate-type corrosion products and scale. In addition to changing the FeCO₃ morphology, compositional heterogeneity within the scale will be expected. Brines usually have a high concentration of Ca²⁺. Therefore, the system will be saturated with respect to CaCO₃ precipitation and it will be deposited on a corroding steel surface. The presence of CaCO₃ or mixture with FeCO₃ would affect types of corrosion (uniform or localized). Results from this research will be applicable in CO_2 enhanced oil recovery (EOR) as well as injection of CO₂ into deep saline aquifers for CO₂ sequestration. The reported results are for a preliminary study relating to low pressure CO₂ corrosion.

Objective

Study the effect of Ca²⁺ on formation and protectiveness of FeCO₃ on casing steel as well as its potential to facilitate localized corrosion.

Experimental Setup/Details

Hypotheses

Condition
1 / 0.52 bar
80°C
Static
1 wt.% NaCl
10 ppm
0,10,100,1000,10000
6.6 (± 0.1)
Carbon steel 1018
4 to 7 days

* Prior to FeCl₂ & CaCl₂ addition.

- ➢ High concentration of Ca²⁺ results in compositional heterogeneity, this yields a less protective corrosion product scale.
- \succ High concentration of Ca²⁺ in the presence of aqueous CO₂ will result in a casing surface covered by CaCO₃, which is ~2 orders of magnitude more soluble than FeCO₃. Due to the variable pH environments that will result when CO_2 is injected, this $CaCO_3$ layer won't be as persistent and protective as $FeCO_3$ and there will be the possibility of severe uniform or localized corrosion.

Effect of Calcium Ion on the Formation and OHIO **UNIVERSITY** Protectiveness of Iron Carbonate Layer in CO₂ Corrosion

INSTITUTE FOR CORROSION AND MULTIPHASE TECHNOLOGY

Thermodynamic Data at pH 6.6

- ✓ At low concentration (\leq 100ppm), Ca²⁺ didn't have a significant effect on corrosion.
- At high concentration (1000 & 10000ppm), Ca²⁺ increased the general corrosion.
- At the highest tested concentration (10000ppm), Ca²⁺ caused localized corrosion.

Future Work

- Low pressure experiments will be conducted to challenge formed $FeCO_3$ by Ca^{2+} addition.
- \blacktriangleright Experiments will be continued with high pressure CO₂ (up to 100 bar).

References

- A. Pfennig and A. Kranzmann," Reliability of Pipe Steels with Different Amounts of C and Cr During Onshore During CO₂ Injection." Greenhouse Gas Control, 5(2011) 757-769.
- G. Zhao, J. Li, S.Hao, X.Lu, H.Li, "Effect of Ca²⁺ and Mg²⁺ on CO₂ Corrosion Behavior of Tube Steel." J. Iron. Steel Res. Int., 2005, Vol. 12, pp. 38-42.
- C. Ding, K.Gao, and C. Chen "Effect of Ca²⁺ on CO₂ Corrosion Properties of X65 Pipeline Steel"Int. J. Miner. Metall. Mater., 2009, Vol. 16, pp. 661-666.

Acknowledgements

Author would like to thank her advisors; Prof. Srdjan Nesic, Dr. Yoon-Seok Choi & Dr. David Young. The support of the Department of Chemical & Biomolecular Engineering and the Institute of Corrosion and Multiphase Technology(ICMT) is appreciated.

Saba Navabzadeh Esmaeely Department of Chemical and Biomolecular Engineering Institute of Corrosion and Multiphase Technology sn294410@ohio.edu